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Abstract of the research fellowship 
This research fellowship aimed to use a state-space model, Hidden Markov Model 

(HMM), to predict next year´s birch pollen season intensity. The model worked well in 
countries where birch trees showing significant masting behavior, but did not work well 
in Munich, Germany. We assume that this is due to a different innate flowering rhythm 
of birch trees in more southern locations like Munich. However, a SVM model (Support 
Vector Machine) with less parameters (only meteorological factors in previous summer) 
better explained the annual change in SPI. These results are now being prepared for 
publication. 

Besides the research activity on pollen in Munich, I also visited two other labs in 
Europe known for their expertise in pollen and aerosols, Dr. Athanasios Damialis from 
UNIKA-T (TUM) and Dr. David Topping from Manchester University. I also got a rare 
chance to join the installation of an improved pollen sampler in the research station on 
the highest mountain of Germany (2650m a.s.l.), plus getting ample exposure to a 
different culture by lab activities and other extracurricular activities. 

The stay proved to be very fruitful scientifically as we were able to develop a model 
for Munich, Germany to predict next year birch pollen load from this year climatic 
parameters. It also broadened my horizon to other cultures. 

 
 
 
 
 

Prof. Buters and I in front 
of the pollen indicator. 



1. Introduction 
1.1 Background 

Allergenic pollen has a remarkable impact on human health, provoking pollinosis 
in sensitized patients with a high prevalence of 10–30% in the global population [1]. In 
addition, pollinosis is thought to be on the rise because of two main reasons: i) the 
interrelation and synergistic effect with other aerosols (biotic and abiotic ones) ii) 
changes in the seasonal timing of pollen season and increased allergen exposure 
resulted from climate change. The Seasonal Pollen Index (SPI), integral of pollen 
concentration over pollen season [2], is useful for determining the overall dispersal 
outcome in each year. It provides an important reference for clinical strategies and anti-
allergy medicine production given that the severity of symptoms is closely related to 
allergenic pollen concentration [3-5]. 
1.2 Research problem 

SPI is known to change greatly from year to year. Hence, accurate SPI prediction 
for next year would thus be of great value to allergy stakeholders. Previous studies 
made effort on predicting SPI by determining statistical relationships between observed 
pollen data and observed meteorological factors since the quantity of male flowers is 
closely related to meteorological variables from the previous summer [6, 7]. Multiple 
linear regression is the most common approach [6, 8-10], which is followed by time 
series analyses [10] , and other computational intelligence approaches [11]. In recent 
years, more studies also took physiological aspects into account for attaining better 
forecast for anemophilous trees considering the phenomena “masting behavior” 
(referring to both highly variable interannual flower and fruit production and intra-
annual production synchrony within a population). However, considering the 
uncertainty in spatial representativeness of SPI and intrinsically stochastic natural in 
SPI time series, it is difficult to reproduce the intermittent peaks of SPI only with few 
environmental factors. Therefore, we proposed an unprecedented approach, a state 
space model, that allows us to account for uncertainties in the input data (SPI change 
and meteorological data) and recurrence of mast year to predict the future state via 
previous state and observation. 
1.3 Aim of the project 

This study proposed an unprecedented approach to predict SPI using stochastic 
network Hidden Markov Model (HMM). It considers the uncertainties in input data and 
it is able to capture the sequential transition characteristics of masting behavior and 
the relationship between the amount of male flower and the meteorological conditions 
in the previous summer through stochastic aspects. 

In this project, we aimed to (1) train a HMM model with parameters describing 
the effects of masting behavior and the interrelationship between the meteorological 



conditions in the previous summer and the SPI and (2) construct a more generalized 
model to predict the SPI. 

2. Work program and results  

 

 

The detailed information of each step of work process (Fig. 1) is as below: 

i) Data input 
The 24 years’ input dataset from Munich, Germany contained the objective 

variable (Y) and explanatory variables (X). 
Y: SPI data of birch pollen (1995-2018) 
X: Meteorological data including minimum air temperature, mean air temperature, 
maximum air temperature, precipitation, relative humidity, sunshine duration, 
concentration of CO2 in the previous summer (1994-2017) 
The whole dataset was split into training a dataset (1995-2015) and a test dataset (2016-
2018). 
ii) Feature selection 

Instead of using simple monthly meteorological variables, we used the average of 
each variable during optimized agglomeration periods preceding the flowering year. 
The optimal agglomeration periods were specified as the periods of occurrence of the 
maximum positive and minimum negative correlation coefficients of the 
meteorological variable and SPI, by moving the start date with changing window (the 
number of days). The start date moved from the 1st to the 30th of May, June, and July, 
and the moving window expanded from 14 to 30 days. 
iii) Dimension reduction 

In order to decompose the features into lower dimension without significant loss 
in variance, Principal Component Analysis was implemented. 12 features from feature 
selection step were decomposed into five dimensions with ability to explain ~90% 
variance in original data. 
iv) Prediction model 

The projected features in training data were then fit to the HMM to predict the 
season intensity. In addition, sensitivity analysis was carried out to test how the 
performance of the model changes when the criteria of each pollen level changes. 
Another approach, the Support Vector Machine (SVM) was implemented for 
performance comparison. 

Fig. 1 Analysis process 



 
 
 
 
 
 
 
 
 
 

We assumed the lower performance of HMM was because of no obvious masting 
behavior found in Munich. Hence, the other model SVM with smaller size of 
parameters gave a better explanation for annual change in SPI. These results are 
planned to be published in the near future with notation of EAACI’s research fellowship 
project. 
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