Celiac disease and related food intolerances to cereals

Martin Raithel
C. Bechtold

Dept. Medicine 1, Gastroenterology, Interventional Endoscopy, Functional Tissue Diagnostics, University Erlangen - Nürnberg
Direktor: Prof. Dr. med. M. F. Neurath

www.medizin1.klinikum.uni-erlangen.de
terminology, synonyma

= celiac disease (endemic sprue of adults)
= gluten-sensitive enteropathy
= autoimmunity

prevalence: 1/220 prospective,
1/74 retrospective (1%)
western world (1-2%)

tropical sprue infectious or unknown etiology , in underdeveloped or tropical countries, doxycyclin therapy for 6 months
definition of celiac disease

chronic immune-mediated enteropathy of the small intestine, induced by exposition to gluten in foodstuffs in genetically predisposed individuals

(HLA-DQ 2 and/or –DQ 8)
pathophysiological conditions to develop celiac disease

coincidence of at least 3 predisposing factors:

exogenous trigger + mucosal barrier disturbance/defect + genetic predisposition, resulting in an adaptive, but dysregulated pathophysiological immune response

epidemiology of celiac disease in 2012

gluten

* = glue protein

= collective term for protein mixture

<table>
<thead>
<tr>
<th>Prolamins</th>
<th>50:50</th>
<th>Glutelins</th>
<th>80% of all proteins in grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>soluble in 70% ethanol</td>
<td>soluble in the alkaline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wheat*: gliadin</td>
<td>heat: glutenin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rye: secalin</td>
<td>rye: secalinin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>barley: hordein</td>
<td>barley: hordenin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oats: avenin</td>
<td>oats: avenalin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Amino acids
- Prolin + glutamin

*Wheat allergens, e.g. ω-5 gliadin, water- & salt-insoluble gliadin

Pietzak M. Celiac disease, wheat allergy and gluten sensitivity: When gluten free is not a fad. J Parenteral and Enteral Nutrition 2012; 36(S1): 68S-75S
pathophysiology of celiac disease

Immunopathological damage of enterocytes induce enteropathy (autoimmunity)

Indigestible gliadin peptides pass intestinal barrier, infiltrate lymphocytes into epithelial layer, and release zonulin. GI peptides are modified by tissue transglutaminase 2, activating T killer cells. Antigen-presenting cells stimulate HLA-DQ2 CD4+ T-helper cells and mature B cells, which produce antibodies against tissue transglutaminase, endomysium, conventional gliadin, deamidated gliadin.

Note: Tissue transglutaminase (TTG) is present in many tissues and deamidates proteins and peptides.

Fasano A, Spectrum der Wissenschaft 2010
different forms of celiac disease

<table>
<thead>
<tr>
<th>celiac disease</th>
<th>symptoms</th>
<th>serology</th>
<th>histology</th>
<th>Marsh</th>
</tr>
</thead>
<tbody>
<tr>
<td>typical</td>
<td>yes – gastrointestinal malabsorption</td>
<td>positive HLA DQ2/8</td>
<td>positive</td>
<td>≥2-3 a-c</td>
</tr>
<tr>
<td>mono- or oligosyptomatic</td>
<td>discrete, (e.g. iron deficiency, growth retardation ...)</td>
<td>positive HLA DQ2/8</td>
<td>positive</td>
<td>1-2</td>
</tr>
<tr>
<td>asymptomatic or silent</td>
<td>no</td>
<td>90% positive HLA DQ2/8</td>
<td>positive</td>
<td>≥1</td>
</tr>
<tr>
<td>atypical</td>
<td>often uncharacteristic symptomatology (extraintestinal)</td>
<td>positive</td>
<td>positive</td>
<td>1-3 a</td>
</tr>
<tr>
<td>latent</td>
<td>asymptomatic or oligosyptomatic during gluten-free diet; previously celiac disease</td>
<td>neg. oder pos. HLA DQ2/8</td>
<td>uncharacteristic to negative</td>
<td>. . . (previously 1-3 a ?)</td>
</tr>
<tr>
<td>potential</td>
<td>no symptoms at presentation (but possible in future)</td>
<td>positive HLA DQ2/8</td>
<td>negative</td>
<td>0</td>
</tr>
<tr>
<td>transient</td>
<td>celiac disease in infancy, remission under diet - later, despite gluten intake no recurrence!</td>
<td>positive HLA DQ2/8</td>
<td>positive</td>
<td>>1</td>
</tr>
<tr>
<td>refractory</td>
<td>yes type 1: normal population IEL type 2: aberrante/premalignant IEL</td>
<td>positive HLA DQ2/8</td>
<td>positive</td>
<td>>1</td>
</tr>
</tbody>
</table>
Histology
Marsh-Criteria

<table>
<thead>
<tr>
<th>Marsh</th>
<th>Villi</th>
<th>Crypts (villi : crypts)</th>
<th>Intraepithelial Lymphocytes/100 Epithelial Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marsh 0</td>
<td>normal</td>
<td>normal (v : c >> 3)</td>
<td>0 – 25</td>
</tr>
<tr>
<td>Marsh 1</td>
<td>normal</td>
<td>normal (v : c = >3 : 1)</td>
<td>pathological >40 (suspicious > 25)</td>
</tr>
<tr>
<td>Marsh 2</td>
<td>normal</td>
<td>hyperplastic (v : c = >2 : 1)</td>
<td>>40</td>
</tr>
<tr>
<td>Marsh 3 a</td>
<td>partial atrophy</td>
<td>hyperplastic (v : c = <2 : 1)</td>
<td>>40</td>
</tr>
<tr>
<td>Marsh 3 b</td>
<td>subtotal atrophy</td>
<td>hyperplastic (v : c = <2 : 1)</td>
<td>>40</td>
</tr>
<tr>
<td>Marsh 3 c</td>
<td>complete atrophy</td>
<td>hyperplastic (v : c = <2 : 1)</td>
<td>>40</td>
</tr>
<tr>
<td>Marsh 4</td>
<td>complete atrophy</td>
<td>hypoplastic</td>
<td>>40</td>
</tr>
</tbody>
</table>

Cave: collagenous celiac disease

4–5 biopsies from different locations of the duodenum (descending part & 1–2 biopsies from duodenal bulb)

Marsh, Gastroenterology 102, 330, 1992
celiac disease - clinical symptoms

- **typical symptoms**
 - diarrhea
 - weight loss
 - bloating, meteorism
 - obstipation
 - weakness
 - failure to thrive

- **atypical symptoms (often)**
 - iron deficiency, anemia
 - pallor
 - personality changes
 - enamel defects
 - depression, ataxia, epilepsy
 - osteoporosis, arthritis
 - infertility, miscarriage

89 newly diagnosed celiac disease patients

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>iron deficiency</td>
<td>24</td>
</tr>
<tr>
<td>iron deficiency without anemia</td>
<td>22</td>
</tr>
<tr>
<td>often abdominal pain</td>
<td>20</td>
</tr>
<tr>
<td>mood alterations</td>
<td>14</td>
</tr>
<tr>
<td>aphtous stomatitis</td>
<td>9</td>
</tr>
<tr>
<td>loss of appetite</td>
<td>8</td>
</tr>
<tr>
<td>often diarrhoea</td>
<td>7</td>
</tr>
<tr>
<td>growth retardation</td>
<td>6</td>
</tr>
<tr>
<td>meteorismus</td>
<td>4</td>
</tr>
<tr>
<td>obstipation</td>
<td>2</td>
</tr>
<tr>
<td>delayed puberty</td>
<td>2</td>
</tr>
<tr>
<td>decreased serum albumine</td>
<td>2</td>
</tr>
</tbody>
</table>

Catassi et al., Acta Paediatr. 85, S412, 29, 1996

- nowadays **often unspecific symptoms**, - not rarely, adverse food reactions differential diagnoses – food intolerance or gastrointestinal food allergy
diagnostics of celiac disease

obligatory diagnostics
1. serology (antibody diagnostics) & total IgA level
2. endoscopy & histology
3. HLA-detection DQ2/8

adjunctive diagnostics
4. transabdominal ultrasonography
5. H2-, C13-breath test, (xylose test)
5. capsule endoscopy & modern enteroscopy (double - or single balloon enteroscopy, spiral enteroscopy)
6. MRT-Sellink small bowel, CT-Abdomen

Modern Serological Tests for Celiac Disease

<table>
<thead>
<tr>
<th>1. – 3. Celiac Disease Specific Antibodies</th>
<th>serum IgA Antibody</th>
<th>serum IgG Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tissue Transglutaminase 2 (anti-TG2 IgA)</td>
<td>1. Tissue Transglutaminase 2 (anti-TG2 IgG)</td>
<td></td>
</tr>
<tr>
<td>2. Anti-Endomysial Antibody (EMA IgA)</td>
<td>2. Anti-Endomysial Antibody (EMA IgG)</td>
<td></td>
</tr>
<tr>
<td>3. Anti-Gliadin Deamidated (anti-DGP IgA)</td>
<td>3. Anti-Gliadin Deamidated (anti-DGP IgG)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Celiac Disease (typical, oligo- and/or monosymptomatic)</td>
<td>95-100%</td>
<td>90-97%</td>
</tr>
<tr>
<td>Silent Celiac Disease</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>Latente Celiac Disease</td>
<td>Borderline - negative</td>
<td>30-60%</td>
</tr>
<tr>
<td>Food Allergy Irritable Bowel Syndrome (IBS)</td>
<td>(borderline) – negative (borderline) – negative</td>
<td>Partially detectable 15-40% Partially detectable 30-36%</td>
</tr>
<tr>
<td>Normal Population</td>
<td>Negative</td>
<td>25-30%</td>
</tr>
</tbody>
</table>
serology in celiac disease

Serology with celiac disease specific antibodies is only useful, if a sufficient gluten ingestion is present within the last 2-3 months = 0,5-1g gluten/kg b.w. ! adults up to 40 g/day (at least 2 slices of white bread) children up to 15g/day

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity (Range)</th>
<th>Specificity (Range)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgA anti-tTG antibodies</td>
<td>>95.0 (73.9–100)</td>
<td>>95.0 (77.8–100)</td>
<td>Recommended as first-level screening test</td>
</tr>
<tr>
<td>IgG anti-tTG antibodies</td>
<td>Widely variable (12.6–99.3)</td>
<td>Widely variable (86.3–100)</td>
<td>Useful in patients with IgA deficiency</td>
</tr>
<tr>
<td>IgA antiendomysial antibodies</td>
<td>>90.0 (82.6–100)</td>
<td>98.2 (94.7–100)</td>
<td>Useful in patients with an uncertain diagnosis</td>
</tr>
<tr>
<td>IgG DGP</td>
<td>>90.0 (80.1–98.6)</td>
<td>>90.0 (86.0–96.9)</td>
<td>Useful in patients with IgA deficiency and young children</td>
</tr>
<tr>
<td>HLA-DQ2 or HLA-DQ8</td>
<td>91.0 (82.6–97.0)</td>
<td>54.0 (12.0–68.0)</td>
<td>High negative predictive value</td>
</tr>
</tbody>
</table>

* Data are from Husby et al. and Giersiepen et al. DGP denotes deamidated gliadin peptides, and tTG tissue transglutaminase.

Fasano A NEJM 2012
asymptomatic patients with increased risk of celiac disease conditions for celiac disease screening

- first-degree relatives of celiac disease patients
- diabetes mellitus type 1
- selective IgA deficiency
- Dermatitis herpetiformis Duhring (DH)
- vitiligo
- autoimmune thyreoiditis
- autoimmune disease of liver and bile system
- **genetic syndromes:**
 - trisomie 21 (Down syndrome)
 - Ullrich-Turner-syndrom
 - Williams-Beuren-syndrom
celiac disease - complications

- **symptoms due to malabsorption**
 - hypovitaminose (vit A, D, K, E) and vit B1, B12 and others
 - tetany, muscle cramps, osteomalacia, bleeding, polyneuropathy

- **collagenous celiac disease**
 - thick collagen layer under epithelial cells - steroids

- **refractory celiac disease with progredient weight loss**
 - no response to gluten-free diet, poor prognosis

- **risk of malignancy: 1.29 fold increased**
 - gastrointestinal neoplasm 1.85 fold
 - lymphoproliferative disease 4.8-6.42 fold
 - breast or lung cancer 0.35 / 0.34 fold

- **secondary autoimmunity**
 - polyendocrinopathy, thyreoiditis

- **secondary carbohydrate malassimilation**

West J, BMJ 2004
Silano M, Dig Dis Sci 2007
differential diagnoses of celiac disease and intolerance to cereals

- frukto-oligosaccharides, -polysaccharides (fructans)
- incomplete starch digestion
- small intestinal bacterial overgrowth (SIBO)
- carbohydrate malassimilation

- dysbiosis
- bacterial histamine?
- IEL, villus atrophy

- gut associated lymphoid tissue (GALT)
- D A O - ? - HNMT

- carbohydrate malassimilation
- bacterial histamine?
- IEL, villus atrophy

- HLA DQ2, DQ8
- atopy - entopy

- DAO deficiency
- histamine degradation ↓
- mast cell hyperplasia
- histamine production ↑

- malabsorption
- allergy

Kaukinen K et al. Intolerance to cereals is not specific for celiac disease. Scan J Gastroenterol 2000; 35: 942-946
therapy of celiac disease

1. avoidance of the exogenous trigger (therapy of choice)
 • gluten-free diet, lifelong

2. modulation of immune response (second choice)
 only when gluten-free diet fails (refractory celiac disease, type I >> type II)
 • glucocorticoids
 • azathioprin, tacrolimus
 • case reports anti-TNF

3. symptomatic therapy (malabsorption)
 • substitution Ca, Fe, vitamin D, folat, . . .
 • carbohydrate reduced diet (lactose, fructose, sorbit, ...)
 • medium chain fatty acids initially, glutamine, diet respecting other intolerances, e.g. histamine, ...

4. new therapeutic developments in future?
 • gliadin-digestion (enzymes), synthetic polymers, genetically modified grains
 • probiotics (VSL 3), improvement of gut barrier, blockage of HLA DQ2/8
 • tannins, adstringents coupled with antibodies (IgY) against peptic-tryptic digested gliadin (glutosin)
therapy of celiac disease

how much gluten is gluten-free?

Codex Alimentarius (1st January 2012):

„very low gluten content“ \(\leq 100 \text{ mg gluten/kg} \)

„gluten-free“ \(\leq 20 \text{ mg/kg} \)

„food products with oats“ \(\leq 20 \text{ mg/kg Gluten} \).

at diagnosis and 4 weeks later

nutrition counseling and education of patient and family

structured dietary advice, food lists of celiac disease society,

alternative products should be offered (millet, maize, rice, ...)

controversy oats?

- only under medical observation (gastroscopy after 3-6 months and in stable disease)

gluten challenge (special situations)

oral gluten application, 0,5-1g gluten/kg b.w.

adults up to 40 g/d - children up to 15g/d for 2-4-8 weeks

http://dzg-online.de

eating from internet

www.glutenfreigeniessen.de

www.querfood.de

www.glfparadies.de
therapy of celiac disease – new treatment options

- Reduce gluten exposure
 - Genetically modified grains
 - Enzyme degradation*
 - Synthetic polymers
- Decrease intestinal permeability
 - Zonulin inhibition (larazotide)**
- Decrease immune activation
 - TTG* inhibition (reduce gliadin deamidation)
 - HLA# DQ2/DQ8 blockade
 - Cytokine modulation/blockade

bacterial endopeptidases for gluten digestion
TTG = Tissue-transglutaminase 2

De Angelis M et al. VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for celiac sprue. Biochim Biophys Acta 2006, 1762:80-93

Tennyson CA et al Therapeutic Advances in Gastroenterology 2009
algorithm for celiac disease diagnosis

Guijral N et al
World J Gastro-enterol 2012