Spirometry

Eugenio Sabato
What is spirometry

The spirometry is a very simple, non-invasive, test which allows to measure the amount of air a subject can inhale and exhale, and the time required to do so.

It’s essential for the diagnosis and monitoring of many diseases of the respiratory system.

Is performed with an instrument called a "spirometer"
Spirometer is an instrument that measures and records the volume of inhaled and exhaled air, used to assess pulmonary function.

The computer connected to spirometer converts the signal into numerical values and graphical images called a spirogram.
The spirometer can measure:

- The volume of air mobilized (or bellows spirometer),

- The flow of air mobilized (pneumotachograph, turbine spirometer)
WHY WE DO IT!

- Diagnosis confirmation
- COPD classification
- Disease progression
- Response to treatment
- Health Promotion (Smoking Cessation)
- Targets
When not to perform spirometry

- Inadequate training
- Inadequate equipment
- Lack of quality control
- Contra-indications
- During or immediately after an exacerbation

Contra-indications

- Haemoptysis
- Pneumothorax
- Unstable cardiac status
- Aneurysm
- Recent eye surgery
- Recent thoracic or abdominal surgery
- Acute disorders: D&V, Exacerbations
How we do it!

- Equipment / spirometers / syringes
- Cleaning
- Temperature
- Calibration/Verification checks
- Filters
Standardization

Protocol drawn in accordance with the documents of international and national associations

AIMS

• QUALITY

  delete variables:

  instrumentation
  calibration
  performer
  collaboration

Reduction of the infection risk
PROCEDURE

Preparation of the patient
Suspending drugs
Medical history
Teaching and Demonstration

Slow maneuver (VC)
I: Quiet breathing
II: Full inspiration
III: Complete exhalation

Forced maneuver (FVC)
I: Quiet breathing
II: maximal inspiration
III: rapid and complete expiration
IV: rapid and deep inspiration
Volume-Time curve (V/T)

Flow-Volume curve (F/V)

Lung Volume
Static Lung Volume

- **Tidal volume (VC)**: gas volume inhaled and exhaled during each breath.

- **Inspiratory reserve volume (VRI)**: maximum amount of gas that can be inspired at the end of normal inhalation.

- **Exspiratory reserve volume (VRE)**: maximum amount of gas that can be exhaled at the end of normal expiration.

- **Residual volume (VR)**: amount of gas remaining in the lungs at the end of full exhalation.
Capacity

- **Total lung capacity (TLC)**
  amount of gas contained in the lungs at the end of maximal inspiration (CPT = VRI + VC + VRE + VR).

- **Vital Capacity (VC)**
  amount of gas that can be expelled from the lungs after maximal inspiration (CV = VRI + VC + VRE).

- **Inspiratory Capacity (IC)**
  maximum amount of gas that can be breathed in from level expiratory basic (CI = VRI + VC).

- **Functional Residual Capacity (FRC)**
  amount of gas remaining in the lungs at the level expiratory resting (CFR = VRE + VR).
Dinamic lung volume

a. The forced expiratory volume in one second FEV (or FEV1) that represents the volume of air exhaled during the first second of a forced expiration.

b. The forced expiratory flow between 25% and 75% of FVC FEF 25-75

c. The forced vital capacity (FVC) volume of forced exhaled air after maximal inhalation

d. The Tiffeneau index (ratio of FEV / FVC x 100).
the fundamental parameters

**FVC** - *Forced Vital Capacity*  
Total volume of air expelled in a forced expiration starting from full inhalation.

**VC** - *Vital capacity*  
Total volume of air expelled in a slow maximal exhalation, starting from a full inspiration.

**FEV1** - *Forced expiratory volume in 1 second*  
Volume of air expelled in the first second of a forced expiration, starting from a full inspiration.

**FEV1/FVC** *Tiffeneau Index*  
The relationship between FEV and FVC discriminates against an obstructive deficit by a restrictive. Normally 70-75% of the FVC is exhaled in the first second.

**PEF** *Peak Expiratory Flow*  
PEF is the highest sustained flow for at least 10 msec with a forced expiration starting from full inhalation.
READING spirometry

MORPHOLOGY OF THE CURVE

Quality inspection of the curve

Check of the technical requirements
VC (5-6 breaths) Forced Vital Capacity
Exhalation (lasting at least 6 sec.,
End-expiratory flow > 1 sec.)
Lack of artifacts

Three tests acceptable
Reproducibility: difference between the two best FEV ≤ 200 ml
Type functional deficit
Incorrect flow-volume curves

Slow start exhalation

Stop rxhalation before 6’

Cough

Closure
READING spirometry

ASSESSMENT OF FVC
<80% of the theoretical value: restrictive defect

EVALUATION OF FEV
<80% of the theoretical value: obstructive deficit

EVALUATION Tiffeneau INDEX or FEV / FVC
<70 - 75% of the absolute value: obstructive deficit

ASSESSMENT REDUCTION IN RELATION TO THE THEORETICAL FEV%
Obstruction severity classification
FLOW-VOLUME CURVE

Restrictive respiratory disease

Obstructive respiratory disease
The curves of patients with a restrictive respiratory disease have an almost normal shape, while the lung volumes and flows are considerably reduced.
RESULTS INTERPRETATION
RESTRICTIVE DEFICIT

• CVF is reduced
• FEV is reduced
• FEV / FVC (Tiffeneau) is normal or increased
• PEF is reduced
• FEF 25-75 is reduced

• N.B. The reduction of all the parameters is proportional and concomitent
Obstructive pulmonary disease

Obstructive pulmonary disease generate the concave curves that represent the slowing of expiratory flow through the respiratory system. The degree of deformation reflects the severity of the obstruction.
PATHOLOGICAL CURVES
Upper airway obstruction

**D Variabile extratoracica**
- Flusso espiratorio (L/s)
- Flusso inspiratorio (L/s)
- Volume (L)
- $\frac{\text{FEF}_{50}}{\text{FIF}_{50}} = 2.5$

**E Variabile intratoracica**
- Flusso espiratorio (L/s)
- Flusso inspiratorio (L/s)
- Volume (L)
- $\frac{\text{FEF}_{50}}{\text{FIF}_{50}} = 0.3$

**F Fissa**
- Flusso espiratorio (L/s)
- Flusso inspiratorio (L/s)
- Volume (L)
- $\frac{\text{FEF}_{50}}{\text{FIF}_{50}} = 0.9$
RESULTS INTERPRETATION

Obstructive DEFICIT

- FVC is normal (reduced in advanced stages)
- FEV is reduced
- FEV / FVC is reduced
- PEF is reduced
- FEF 25-75 is reduced
# Forced Expiratory Test Interpretation

<table>
<thead>
<tr>
<th>Functional Indices</th>
<th>Restrictive ventilatory failure</th>
<th>Obstructive ventilatory failure</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FVC</strong></td>
<td>Reduced</td>
<td>Normal or Reduced</td>
</tr>
<tr>
<td><strong>FEV1</strong></td>
<td>Declined proportional to the CVF</td>
<td>Declined more than FVC</td>
</tr>
<tr>
<td><strong>FEV1/FVC%</strong></td>
<td>Normal</td>
<td>Reduced</td>
</tr>
</tbody>
</table>
### Static Lung Volume Interpretation

<table>
<thead>
<tr>
<th>Functional Indices</th>
<th>Restrictive ventilatory failure</th>
<th>Obstructive ventilatory failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV</td>
<td>Reduced</td>
<td>Increased</td>
</tr>
<tr>
<td>TLC</td>
<td>Declined proportional to RV</td>
<td>Normal or slightly increased</td>
</tr>
<tr>
<td>RV/TLC%</td>
<td>Normal</td>
<td>Increased</td>
</tr>
</tbody>
</table>
Interpretation

Ventilatory failure

- **OBSTRUCTIVE**
  - Asthma
  - COPD
    - chronic bronchitis
    - emphysema
  - Bronchiectasis

- **RESTRICTIVE**
  - Diseases of the chest
  - Neuromuscular diseases
  - Infiltrative lesions
  - Pulmonary Fibrosis
  - Pleural diseases
REVERSIBILITY TEST

Assessment of obstruction reversibility

FEV1 is reevaluated, with a forced expiratory maneuver, 20’ after administration of 200-400 mcg of beta-2 agonist or 80 mcg of anticholinergic.

There may be three possibilities:

1. The FEV1 increases of >12% and 200 ml from baseline returning to normal values (>80% predicted):
   OBSTRUCTION FULLY REVERSIBLE (typical bronchial Asthma)

2. FEV1 increased by 12% or 200 ml from baseline but remains <80% predicted and FEV/FVC <70:
   OBSTRUCTION PARTIALLY REVERSIBLE (typical of partially reversible COPD)

3. Increases FEV1 <12% or 200 mL from baseline:
   OBSTRUCTION NOT REVERSIBLE (typical of COPD is not reversible)