Position paper
Occupational rhinitis

The present document is the result of a consensus reached by a panel of experts from European and non-European countries on Occupational Rhinitis (OR), a disease of emerging relevance, which has received little attention in comparison to occupational asthma. The document covers the main items of OR including epidemiology, diagnosis, management, socio-economic impact, preventive strategies and medicolegal issues. An operational definition and classification of OR tailored to that of occupational asthma, as well as a diagnostic algorithm based on steps allowing different levels of diagnostic evidence, are proposed. The needs for future research are pointed out. Key messages are issued for each item.

Key messages
Definition and classification

- Occupational rhinitis (OR) is an inflammatory disease of the nose, which is characterized by intermittent or persistent symptoms (i.e., nasal congestion, sneezing, rhinorrhea, itching), and/or variable nasal airflow limitation and/or hypersecretion arising out of causes and conditions attributable to a particular work environment and not to stimuli encountered outside the workplace.

- Work-related rhinitis may be distinguished into: (i) OR that arises out of causes and conditions attributable to a particular work environment and (ii) work-exacerbated rhinitis that is pre-existing or concurrent rhinitis exacerbated by workplace exposures.

Epidemiology

- Surveys of workforces exposed to sensitizing agents indicate that OR is two to four times more common than OA, although the contribution of workplace exposures to the general burden of rhinitis remains unknown.

Abbreviations: HMW, high molecular weight; LMW, low molecular weight; NPT, nasal provocation test; OA, occupational asthma; OR, occupational rhinitis; WER, work-exacerbated rhinitis.
The level of exposure is the most important determinant of IgE-mediated sensitization to occupational agents and OR.

Atopy is a risk factor for the development of IgE-mediated sensitization to high molecular weight (HMW) agents, but the association with clinical OR caused by HMW agents is less well substantiated.

Relationships with occupational asthma

A majority of patients diagnosed with OA also suffer from OR, which most often precedes the development of OA, especially when HMW agents are involved.

Occupational rhinitis is associated with an increased risk of asthma, although the proportion of subjects with OR who will develop OA remains uncertain.

Investigation and diagnostic approach

Questionnaires and the clinical history have a low specificity for diagnosing OR.

Immunological tests (skin prick tests and specific IgE antibodies) are sensitive but not specific tools for diagnosing OR caused by most HMW agents and some low molecular weight agents (i.e., platinum salts, acid anhydrides, and reactive dyes).

In the presence of work-related rhinitis symptoms, objective assessment using nasal provocation challenges in the laboratory or at the workplace should be strongly recommended.

Management

Complete avoidance of exposure to the agent causing allergic OR should still be recommended as the safest and most effective therapeutic option.

When complete elimination of causal exposure is expected to induce important adverse socio-economic consequences, reduction of exposure with relevant pharmacotherapy may be considered an alternative approach, especially in workers with a lower risk of developing asthma (e.g. workers without nonspecific bronchial hyper-responsiveness, with mild/recent disease or with a short expected duration of exposure); these workers should, however, benefit from close medical surveillance aimed at an early detection of OA.

Socio-economic impact

The socio-economic impact of OR remains unknown, but is likely to be substantial in terms of work productivity as can be extrapolated from data available for allergic rhinitis in general.

Prevention

Primary prevention strategies should focus on reducing exposure to potentially sensitizing agents.

Identification and exclusion of susceptible agents is not efficient, particularly when the marker of susceptibility (e.g. atopy) is prevalent in the general population.

Surveillance programs aimed at an early identification of OR should include periodic administration of questionnaires and immunological tests when available.

Surveillance of workers should focus on the first 2–5 years after entering exposure.

The possibility of OA should be carefully evaluated in all workers with OR.

Medico-legal aspects

Workers with OR should theoretically be considered impaired on a permanent basis for the job that caused the condition as well as for jobs with similar exposures.

Compensation of OR should aim at providing incentives to accommodate workers to unexposed jobs and offering vocational rehabilitation programs to minimize the adverse socio-economic consequences of the disease.

Occupational rhinitis (OR) is a disease of emerging relevance, which has received little attention in comparison to other forms of rhinitis (1). There is currently no consensus on the definition and classification of OR. In addition, diagnostic procedures and strategies for the management of subjects with OR remain poorly standardized. This is a particularly important point as an accurate and early recognition of OR in surveillance programs is not only important per se, but is also useful in the prevention and early diagnosis of OA.

The purpose of this document was to issue key messages and consensus recommendations based on existing scientific evidence and the expertise of a panel of physicians coming from different European and nonEuropean countries. This executive summary is based on a comprehensive and critical review of available information on the different aspects of OR including diagnostic procedures, management, societal burden, and preventive strategies. The whole document is available online at EAACI website (http://www.eaaci.net; accessed 26 April 2008).

Definition and classification

The similarities and tight interactions between rhinitis and asthma (1) support the need for homogeneous definitions of OR and OA. The most widely accepted
definition of OA refers to the pathophysiological changes that occur in the lower airways, i.e. ‘variable airflow limitation and/or bronchial hyperresponsiveness and/or inflammation’ (2–4). A similar approach cannot easily be translated to OR because: (1) nasal airflow limitation is not always present in OR; and (2) the various methods used for assessing nasal patency, non-specific hyper-responsiveness, and inflammation have not been thoroughly validated (5, 6), and (3) these procedures are still largely underused in clinical practice. Nevertheless, considering that inflammatory changes in the mucosa are common features of both rhinitis and asthma, the following consensus definition of OR is proposed:

Occupational rhinitis is an inflammatory disease of the nose, which is characterized by intermittent or persistent symptoms (i.e. nasal congestion, sneezing, rhinorrhea, itching), and/or variable nasal airflow limitation and/or hypersecretion due to causes and conditions attributable to a particular work environment and not to stimuli encountered outside the workplace.

The central concept of this broad definition is the causal relationship between work exposure and the development of the disease. In addition, this definition is based on demonstrable pathophysiological changes and it does not place restriction according to the underlying mechanism.

There is accumulating evidence that the workplace environment can induce or trigger a wide spectrum of rhinitis conditions involving immunological and non-immunological mechanisms (7–10). These various conditions should be referred to as ‘work-related rhinitis’ and should be further distinguished according to the clinical features, etiopathogenic mechanisms and the strength of the evidence supporting the causal relationship.

According to the revised nomenclature for allergy recently recommended by the European Academy of Allergy and Clinical Immunology (11) and the classification of work-related asthma proposed by panels of experts (2–4) different types of ‘work-related rhinitis’ may be delineated as detailed below and summarized in Fig. 1. This review will, however, focus on immunologically mediated OR, as there are only scarce data on the other forms of work-related rhinitis.

Occupational rhinitis

Allergic OR. Work-related rhinitis symptoms are caused by immunologically mediated hypersensitivity reactions resulting from antibody- or cell-mediated mechanisms. This entity is characterized clinically by the development of nasal hypersensitivity to a specific occupational agent appearing after a latency period, which is necessary to acquire immunological sensitization to the causal agent. Once initiated, the symptoms recur on re-exposure to the sensitizing agent at concentrations not affecting other similarly exposed workers. In allergic OR, the causal role of occupational agents can be documented on an individual basis through nasal provocation test (NPT),
The term *non-IgE-mediated OR* has been used to describe the most severe form of irritant-induced OR, which usually occurs without a latency period, although the absence of latency may be obscured when workers are repeatedly exposed to high levels of irritants at work. This entity is quite similar to the situation of the ‘reactive upper airways dysfunction syndrome’ (2, 4), so that the term ‘reactive upper airways dysfunction syndrome’ has been proposed (15). In these cases of irritant-induced OR, evidence supporting a causal relationship with the workplace can be drawn only from the temporal association between exposure to unusually high levels of irritants and the development of rhinitis.

The term ‘irritant-induced OR’ may also refer to symptoms of rhinitis reported by subjects repeatedly exposed at work to irritants (vapours, fumes, smokes, dusts) without identifiable exposure to high concentration of irritants. A variety of occupational exposures have been associated with rhinitis symptoms, nasal airflow obstruction, and/or nasal inflammation, usually with a predominant neutrophilic component (16, 17).

The term ‘corrosive rhinitis’ has been used to describe the most severe form of ‘irritant-induced OR’, which is characterized by permanent inflammation of the nasal mucosa (sometimes associated with ulcerations and perforation of the nasal septum) that may develop after exposure to high concentrations of irritating and soluble chemicals (8, 10, 18).

Work-exacerbated rhinitis

Work-exacerbated rhinitis (WER) should be defined as pre-existing or concurrent (allergic or nonallergic) rhinitis that is worsened by workplace exposures (10, 19), while the disease has not been caused by the work environment. It is indeed highly likely that rhinitis symptoms can be triggered by a wide variety of conditions at work, including irritant agents (e.g., chemicals, dusts, fumes), physical factors (e.g., temperature changes), emotions, second-hand smoke, and strong smells (e.g., perfumes).

The clinical features of a WER are similar to those of OR, so that the possibility of a WER should be considered only after careful exclusion of a specific sensitization to a workplace agent through appropriate diagnostic procedures. The mechanisms involved in the development of WER have been scarcely explored. The nasal response to irritant stimuli seems to be affected by age, gender and the presence of allergic rhinitis (20, 21).

Epidemiology

Prevalence and incidence

The prevalence and incidence of OR in the general population have almost never been specifically investigated. Data from the Finnish Register of Occupational Diseases (1986–1991) suggest that occupations at increased risk include furriers, bakers, livestock breeders, food-processing workers, veterinarians, farmers, electronic/electrical products assemblers, and boat builders (22).

The results of cross-sectional studies conducted in various working populations exposed to a wide range of HMW and LMW agents, as recently reviewed (23), are reported in Table 1. Available data indicate that OR is usually 2–4 times more prevalent than OA (23, 24). Prevalence estimates of rhinitis and OR are largely affected by the criteria used for identifying the condition (24). The incidence of work-related nose symptoms has been investigated in a few prospective cohort studies that are summarized in Table 2 (25–30).

Risk factors

Exposure and atopy have consistently emerged as the main potential determinants for the development of OR. A dose–response gradient between the level of exposure and IgE-mediated sensitization has been substantiated for various HMW agents (31–37). However, much of the evidence relates to immunological sensitization rather than to clinical OR (23). Atopy has been associated with an increased risk of specific sensitization to a variety of HMW agents (23, 24) and with clinical OR caused by these agents (Table 1) (28, 38, 39). Available studies have provided inconsistent results regarding the relationships between atopy and OR (23, 40). The relationships between smoking and occupational sensitization and OR remain controversial (41–43). There is some evidence from cohort studies (40, 44) that nonspecific bronchial hyper-responsiveness may be associated with an increased risk for the subsequent development of work-related nasal symptoms.
Relationships with occupational asthma

With regard to the association between rhinitis and asthma of occupational origin, Malo et al. have documented that rhinitis symptoms are common among subjects with OA, 92% patients with OA reporting symptoms of OR (45). The prevalence of rhinitis symptoms was not different for HMW and LMW agents, although the intensity of symptoms was more pronounced for HMW agents.

Symptoms of OR have been reported to develop before those of OA in 20–78% of affected subjects (19, 45–50). There is some suggestion that symptoms of OR were more often reported to precede OA in the case of HMW compared to LMW agents (45, 46). A longitudinal study of patients seeking compensation for OR from the Finnish Register of Occupational Diseases showed an increased risk of asthma (RR 4.8, 95%CI 4.3–5.4) among those with OR compared to subjects with other occupational diseases (51).

Investigation and diagnostic approach

The investigation of OR includes both assessing the presence of rhinitis and demonstrating its work-relatedness. The diagnosis needs to be confirmed by means of objective methods, as misdiagnosis may have substantial social and financial consequences. The different steps involved in the diagnosis of OR are the clinical history, nasal examination, immunological tests (for allergic OR), and NPT.

In addition, the possibility of lower airways involvement should be carefully evaluated by means of questionnaire, spirometry, and measurement of nonspecific airway responsiveness (52, 53).

Clinical and occupational history

Detailed medical and occupational history remains a key step in the investigation and diagnosis of OR. The main purpose of the medical history of OR is to establish the timing of nasal symptoms in relation with occupational exposure, as suggested for OA (54, 55). History taking should address the following features: duration of employment at current job before onset of symptoms (latency period); agents, tasks or processes associated with the onset or aggravation of symptoms; improvement away from work (weekends or prolonged holidays). The clinical history should also gather information on the
nature, severity, and impact of rhinitis symptoms. Nasal symptoms reported by workers suffering from OR are similar to those experienced by individuals from the general population with non-OR (i.e. rhinorrhea, sneezing, nasal blockage, and itchy nose). Conjunctival complaints often accompany these symptoms, especially in allergic IgE-mediated OR. (45). Although an essential step of the diagnostic approach, the clinical history is not specific enough to establish a diagnosis of allergic OR (19, 24–28).

Nasal examination

The macroscopic appearance of the nasal mucosa can be assessed using anterior rhinoscopy and nasal endoscopy. These techniques, however, do not allow quantitative assessment of nasal changes. Their main value is to rule out other nasal pathologies that may mimic rhinitis or aggravate nasal obstruction (e.g. septal deviations, nasal polyps) in patients with rhinitis.

Physiological assessment

Nasal patency. Objective methods that can be used for assessing nasal patency during the investigation of OR include rhinomanometry, acoustic rhinometry and peak nasal inspiratory flow (5, 56, 57). These techniques share a great inter-individual variability that limits their applicability in clinical practice. Thus, it is not possible to rely on comparisons with reported values of healthy subjects to make a diagnosis of rhinitis. Nevertheless, the above methods have well-defined reproducibility, whereby their use is justified for evaluating nasal response to NPTs.

Nasal inflammation. Nasal secretions can be collected and weighted for quantifying the secretory activity, especially after allergen challenges (58, 59). Inflammatory cells and mediators can be measured in nasal secretions (6). The use of nasal lavage in clinical practice is still limited because of lack of a standardized and validated method. This technique is useful in situations where subjects serve as their own controls as it occurs during NPT or exposure at the workplace. Inflammatory cells can also be assessed using nasal biopsies (6), whose applicability is limited by their invasive character, or using nasal scrapings or brush samples, which are simple and relatively painless procedures (60).

Nonspecific nasal hyper-reactivity. In contrast to bronchial hyper-reactivity in asthma, nasal hyper-reactivity is not so much documented in OR. Nasal challenge tests with histamine, methacholine (61–63) and cold dry air (64, 65) have been proposed as a method to quantify nonspecific upper airway hyper-reactivity. Histamine is by far the most commonly used stimulus and hyper-reactivity to histamine has been convincingly demon-

strated to occur after allergen provocation (66, 67). Methacholine hyper-reactivity has also been reported to increase after allergen provocation (68) but not all studies reproduced these findings (69). Intranasal cold dry air has been shown to be superior to histamine challenge in measuring nasal hyper-reactivity in nonallergic noninfectious perennial rhinitis (64, 65).

Immunological tests

The demonstration of IgE-mediated sensitization to occupational agents can be achieved by means of skin prick test and/or assessment of serum allergen-specific IgE antibodies. However, the sensitivity and specificity of immunological tests in comparison with NPTs have been evaluated in only few studies (24, 49). Positive immunological test may occur in a substantial proportion of exposed asymptomatic individuals (40, 70–73). On the other hand, a negative test result makes the diagnosis of OR unlikely, provided that the appropriate allergens have been tested. The major limitation of immunological tests in the investigation of occupational allergy results from the lack of commercially available and standardized extracts for most occupational agents, especially LMW agents.

Nasal provocation tests

These tests are still considered the gold standard for confirming the diagnosis of OR (57, 74–77). NPTs can be performed either in the laboratory under controlled conditions or at work under natural conditions. The methods that can be used to deliver occupational agents and to measure nasal response during NPTs have been critically reviewed (5, 6, 23, 57, 59, 74–79) and recommendations have been published by the European Academy of Allergy and Clinical Immunology (78) and the Committee on Objective Assessment of the Nasal Airways of the International Rhinologic Society (57). The major limitation of these tests results from the fact that various criteria have been used for defining a positive response, but there is lack of validated comparison between these criteria (58).

Diagnostic algorithm

A consensus diagnostic algorithm has been elaborated (Fig. 2) by taking into account the following practical constraints: (i) the validity of the tests used for diagnosing OR remains largely uncertain and (ii) the level of reliability may vary according to the purpose of the diagnostic evaluation and its expected socio-economic impact.

The first step includes a thorough clinical and medical history, as well as nasal examination. The second step involves the evaluation of sensitization to suspected occupational agents through immunological tests for HMW agents and some LMW agents (i.e. platinum salts, reactive dyes, and acid anhydrides). A suggestive clinical history
associated with a positive immunological tests for a well-standardized extract could be considered as probable OR. The next step involves the objective evaluation of the causal relationship between rhinitis and the work environment through NPTs in the laboratory. If NPT is positive, a definite diagnosis of OR can be established. If NPT is negative, further evaluation of work-related changes in nasal parameters at the workplace is recommended, especially in the presence of a highly suggestive clinical history. Assessment at the workplace may be first considered when NPT in the laboratory is not feasible.

Management

The management of OR has a two-sided objective: (i) minimizing nasal symptoms and their impact on the patients’ well-being and (ii) preventing the development of OA. Therapeutic options include environmental interventions aimed at avoiding exposure to the causal agent and pharmacologic treatment (16). Because of the tight relationships between OR and OA, a closer collaboration between different specialists, ENT, pneumologists and physicians with expertise in occupational medicine and in environmental hygiene may be recommended.

Environmental interventions

Treatment strategies should focus on avoidance of exposure to the agent causing allergic OR. However, complete avoidance of exposure often implies considerable professional changes for affected workers and is associated with substantial socio-economic consequences.
Thus, reduction of exposure may be considered a reasonable alternative, provided that workers with OR undergo close medical surveillance.

Available data indicate that rhinitis could be an early marker of OA. However, having few quantitative estimates (51, 82, 83) of the long-term risk of asthma among patients with OR, it may be reasonable to recommend complete avoidance from exposure in the following settings:

1. The worker has nonspecific bronchial hyper-responsiveness as these subjects have a higher risk of developing asthma (84).
2. The adverse socio-economic consequences can be minimized by relocating the worker to unexposed jobs within the same company or by appropriate job retraining.

Pharmacotherapy and immunotherapy

Pharmacotherapy of OR is similar to that of non-occupational allergic rhinitis and should be instituted according to evidence-based guidelines (1). In allergic OR, medications should not be considered a suitable alternative to elimination or reduction in workplace exposure to the sensitizing agent.

Several studies have reported some improvement in respiratory symptoms during immunotherapy with purified rodent proteins, wheat flour extracts, and natural rubber latex. However, allergen immunotherapy is currently limited by the nonavailability of standardized extracts for most occupational allergens and should be used with caution and close supervision until more data are available (85).

Socio-economic impact

The impact of OR on work productivity has been rarely studied (19, 86). In a 2-year study in Norwegian bakeries, some workers left their jobs because of work-related rhinitis, conjunctivitis and/or skin problems, but none because of asthma (19).

There is little information on the psycho-social impact of OR, although it has been increasingly recognized that allergic diseases may impair patients’ quality of life (87). The negative impact of OR on daily life has been investigated in only one study conducted among greenhouse workers (88).

Prevention

As OR is acknowledged as a risk factor for the development of OA, the prevention of work-related rhinitis may also provide an excellent opportunity to prevent the development of OA.

Primary prevention

Epidemiological data indicate that the level of exposure to sensitizing agents is the most important determinant of IgE-mediated sensitization and OR and, by implication, reducing or eliminating workplace exposure to sensitizing agents should be the most effective approach to minimize the incidence of the disease.

Controlling exposure at the workplace. Examples of effective prevention resulting from reduction of exposure have been documented in enzyme detergent production (89), platinum refining workers (90), laboratory workers (91), and healthcare workers using latex gloves (92). Reducing exposure to safe levels remains, however, quite difficult in field practice, because the threshold level (or dose) of an agent that can elicit sensitization and respiratory reactions remains largely uncertain.

Identification of susceptible workers. The positive predictive values of available susceptibility markers are too low for screening out potentially susceptible individuals (93, 94). This is particularly true in the case of atopy, which is a highly prevalent trait in the general population. Excluding atopic individuals from jobs entailing exposure to HMW allergens would reduce dramatically the number of potential new employees and would be unduly discriminatory. There is a role for a better education on the risk of sensitization of those individuals attending vocational schools (93).

Secondary prevention

The short latency period for the development of OR (25, 82) outlines the need for surveillance of individuals at risk in the very first years of exposure (95). Accordingly, surveillance programs should be implemented during vocational training.

Medical surveillance programs should include the following components (93, 96, 97): (i) preplacement and periodic administration of a questionnaire aimed at detecting work-related symptoms; (ii) detection of sensitization to occupational agents by means of skin prick tests or serum specific IgE antibodies when these tests are available and standardized; (iii) early referral of symptomatic and/or sensitized workers for specialized medical assessment, including NPT in the laboratory and/or at the workplace (24); and (iv) investigation of possible asthma in all workers with confirmed OR.

Medico-legal aspects

Assessment of impairment/disability

Considering that persistence of exposure to an agent causing allergic OR will lead to worsening of the disease and is associated with a risk of asthma, patients with
ascertained OR should, theoretically, be considered impaired on a permanent basis for the job that caused the condition as well as for jobs with similar exposures. Evaluating the level of functional impairment caused by OR is hampered by the absence of reference values for physiological tests. The severity of rhinitis should be assessed according to the grading schemes recommended in official documents (1, 98–100).

Compensation

Policies governing compensation of OR vary widely from one country to another (Table 3). These differences are caused by a number of factors, including administrative regulations and different ways of defining OR, determining causality, and evaluating the level of disability. The criteria used for determining eligibility for compensation are not uniform. Depending on countries’ regulations, compensation may cover different aspects: physiological impairment, work disability, loss of income, healthcare costs and professional retraining. However, available data for OA indicate that financial compensation does not adequately offset the socio-economic consequences of the disease (81). There is now growing consensus that compensation systems should be directed at accommodating workers to unexposed jobs within the same company and to offer structured rehabilitation programs when required (94).

Unmet needs and research areas

Definition and classification

• Characterization of the clinical features and pathophysiologica mechanisms of ‘nonallergic OR’ and ‘WER’.

Table 3. Compensation for occupational rhinitis in different countries

<table>
<thead>
<tr>
<th>List of agents</th>
<th>Belgium</th>
<th>Denmark</th>
<th>France</th>
<th>Ireland</th>
<th>Italy</th>
<th>the Netherlands</th>
<th>Portugal</th>
<th>Spain</th>
<th>the Netherlands</th>
<th>Poland</th>
<th>the United Kingdom</th>
<th>Germany</th>
<th>Austria</th>
<th>Luxembourg</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of occupational diseases</td>
<td>+</td>
<td>+</td>
<td>*</td>
<td>+</td>
</tr>
<tr>
<td>Open system</td>
<td>+</td>
</tr>
<tr>
<td>Determinants of the degree of disability</td>
<td>†</td>
</tr>
<tr>
<td>Needs of medication</td>
<td>+</td>
</tr>
<tr>
<td>Symptoms at work</td>
<td>+</td>
</tr>
<tr>
<td>Worker’s possibilities to avoid further exposure</td>
<td>+</td>
</tr>
<tr>
<td>Degree of disability</td>
<td>NA</td>
<td>5–10%</td>
<td><10%</td>
<td>NA</td>
<td>≤ 3%</td>
<td>NA</td>
<td>10–20%</td>
<td>NA</td>
<td>10%</td>
<td>≤ 15%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

*Rhinitis is not mentioned, but can be recognized under ‘inflammation or ulceration of the mucous membrane of the respiratory passages or mouth produced by dust or liquid or vapor’.

†Also nasal dyspermeability, nasal septal perforation, problems of smell, nasal bleeding and various other symptoms.

‡All these parameters may be taken into account depending on the individual case; none are obligatory.

NA, not available.

Epidemiology

• Quantification of the contribution of OR to the general burden of rhinitis in the general population.

• Development and validation of an international questionnaire to identify OR in epidemiological surveys and clinical practice.

• Further characterization of the role of atopy and smoking in the development of OR.

• Elucidation of the interaction between upper and lower airway responses to sensitizing and irritant agents in the workplace.

Diagnosis

• Standardization of occupational allergen extracts for skin prick tests and for assessment of serum specific IgE.

• Standardization and validation of techniques used for measuring nonspecific nasal hyper-reactivity, nasal airflow, and nasal inflammation.

• Development and standardization of NPT, including standardization of end points, evaluation of the role of nasal NO measurement, and identification of the most useful biological markers of nasal response.

Management

• Specific assessment of the impact of OR in terms of QoL and economic burden to evaluate the cost-effectiveness of therapeutic and preventive interventions.

• Prospective assessment of the efficacy and safety of immunotherapy with occupational agents in controlling rhinitis symptoms and preventing the development of OA.

Moscato et al.

Prevention

- Identification of parameters influencing the prognosis of OR.
- Assessment of the effects of environmental interventions on the clinical and physiological indices of rhinitis, such as the level of nonspecific nasal hyper-responsiveness, and nasal inflammation.
- Assessment of the impact of environmental interventions on the development of OA in subjects with OR.

Compensation

- Definition of consensus criteria for grading impairment/disability resulting from OR.

Acknowledgments

The authors thank Dr Gianni Pala for assisting in the submission of this manuscript.

References

7. Shusterman D. Review of the upper airway, including olfaction, as mediator of symptoms. Environ Health Perspect 2002;110(Suppl. 4): 649–653.

